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Artificial Intelligence (Al)

Techniques that
enable computers
to mimic human
intelligence

Artificial Intelligence

Machine Learning

Deep Learning
Statistical methods with

the ability to learn Training multi-layered neural
from data and improve networks from vast amounts
from experience of data to understand the
without being underlying structure and
explicitly programmed features
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Goals for Today

* What we want to achieve today:

e Theory of (Convolutional) Neural Networks
e Arouse interest for further studies

 What we cannot achieve today:
e Cover all details of Deep Learning
e Go deep into Deep Learning for precision farming



Supervised Learning

Labelled Data
&
Cr,/c} "?J !§ §~ Algorithm

Tom  Jerry  Tom

/ Predicted Labels
Tom Jerry  lerry C&
= >  Tom
Unlabelled Data %

prediction

lerry




Unsupervised Learning
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Reinforcement Learning
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Categories of Machine Learning Algorithms

e Supervised learning

e Given (training) data, which contains the correct answer for
each dataset, the learning algorithm tries to find a hypothesis /O
(model) that allows to predict the outcome for unseen datasets

e Unsupervised learning

e The learning algorithm finds structure in the
given data based on similarity and groups the
data elements into clusters

e Reinforcement learning

e The learning algorithm learns from +— &
[ Isi BaD Dog
rewards of previous decisions L



Regression
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e Learn a model by fitting a (straight) line through all (training) examples

e Predict the outcome for an unseen dataset by substituting the input values
into the model



Linear Regression

 Linear model that predicts a target value y by computing a weighted
sum of the input features (x4, x5, ..., X,,) plus a bias term b

Y=wixqy +wyx, +-+wyx, +b




Linear Regression for Crop Estimation

(T4

field measurements =

Linear regression model for vegetation
parameters, e.g., for crop estimation

hyperspectral
data >




Classification

Age

O O OBenign
%Q) X Malignant

Tumor Size
e Learn a model by finding a (straight) line that separates the (two) classes

e Predict the class by determining in which region your unseen input dataset lies



Logistic Regression

 Computes a probability that the object with the given input features
belongs to the class (or does not belong to the class) by using the
sigmoid logistic function

n
p = a(Zwixi +b>
i=1

o(t) =

1+et




Segmentation

Krmeans with normalization
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e Learn the structure of data by grouping similar examples into a set of clusters

e Predict the properties of an unseen dataset by its closeness to a cluster



Categories of Machine Learning Problems

pric
350000
300000

e Regression — supervised learning problem where

the answer to be learned is a continuous value -

1000 2000 3000 4000
size

e Classification — supervised learning problem where
the answer is discreet (one of finitely many) values

e Segmentation — unsupervised learning problem where R
the structure to be learned is a set of clusters of similar ==/ -
examples | S

W2 =2 4 0 1 2 3 4 &



Machine Learning Process

Define Objective
Prediction /j\\ﬂ Data Gathering
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Image Classification

This image by Nikita is
licensed under CC-BY 2.0
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(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

big grid of

[0, 255]:

> cat



Classical Approaches to Image Classification

Find corners> \V é A >

Define a set of rules

that describes a cat

from edge, corner and
~ higher level features




Data-Driven Approach to Image Classification

1. Collect a (huge) dataset of labelled images

2. Train a classifier using machine learning techniques

3. Predict the class with the trained classifier

CIFAR10
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50,000 training images
each image is 32x32x3

10,000 test images.



Neuron

Impulses carried toward cell body

\\ dendrite
presynaptic
terminal

axon

cell body—

Impulses carried a\;vay
from cell body

This imaage by Felipe Perucho
is licensed under CC-BY 30
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Perceptron

e Supervised learning algorithm for a binary classifier
* Takes vector data x as input and computes a single output value y

output

‘<::> Probability that the
input image shows a cat

.....

Input image

k
4 o
a
O



Mark | Perceptron

* First implementation of the perceptron
algorithm by Frank Rosenblatt ~ 1957

e 20 x 20 cadmium sulfide photocells
(400 pixel image)

_ )1 if wix;+b >0

0 otherwise

* Recognizes letters of the alphabet

" ' ' O o0ee

SEOUENCE IND!GATORS




Multilayer Perceptron

* Many perceptron are grouped so that the output is a vector output

instead of a scalar output value
hidden layer ~ output layer

each neuron of the
output layer stands
for a certain class

iInput layer
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the output value of
a neuron is the
score for its class

74

%
"

]
4

()
0
%
%»

%
)

N
‘g

the neuron with the
highest score defines
the predicted class

O OO OO0

O
O
O
O
O



Parametric Approach to Linear Classifier

f(x,W) = Wx
. f(X,W) > 10 numbers giving
class scores
Array o 3x32x3 numbers T
(3072 numbers total) W
parameters

or weights



Parametric Approach to Linear Classifier

3072x1

image- flx,W)j= Wi

10x1 10x3072 N
> f(x,W) > 10 numbers giving

T class scores
Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights




Parametric Approach to Linear Classifier

3072x1
f(x,W)|=|WK +|b | 10x1

10x1 10x3072 N
> f(x,W) > 10 numbers giving

T class scores
Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights

Image




Parametric Approach to Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

56
\#23 0.2 | -0.5| 0.1 | 2.0 1.1 -96.8 | Cat score
ﬂtzbﬂ?“ 231
B =y 1.5 | 1.3 | 21 0.0 4 | 3.2 | = | 437.9 | Dog score
24 5D
24
e 0 025 | 0.2 | -0.3 -1.2 61.95 | Ship score
Input image )




Interpreting a Linear Classifier

o BB S 2 _

~ aaE EEIEE W)= WD

cat = : :

A e n R Cxample trained weights
ff:fse ==g§ ofglinear classifier

wp  EEE.omEma== trained on CIFAR-10:
cuck S RadMrs@s

plane car bird cat deer dog frog horse ship truck




Interpreting a Linear Classifier
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Interpreting a Linear Classifier

airplane classifi

Plot created using Walfram Cloud

/u
%o
/

deer classifier

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 20




German Traffic Sign Recognition Benchmark

e Single-image, multiple classes

e More than 40 classes ﬁ .

 More than 50,000 images

* Best recognition rates:
1. 99.46% (committee of CNNs)
2. 98.84% (human performance)
3. 98.31% (multi-scale CNNs)




Training
Neural Networks

Prof. Dr. Martin Kada



Training Neural Networks

* Initialize the weights of the network
e Evaluate how good the network is

e (Stepwise) improve the network
e Gradient descent
e Backpropagation
* Learning rate

e Activation functions



Weight Initialization

e Initialize all values of weight matrix W with random gaussian noise
with zero mean and a user-defined (e.g. 0.01) variance
* Works only good for shallow networks

e Weights initialized too small,
then the signal shrinks as it passes through each layer until it vanishes

* Weights initialized too large,
then the signal grows as is passes through each layer until it explodes

e Xavier initialization

 Makes sure the weights are just right, keeping the signal in a reasonable range
of values through many layers

Var(W) =
ar( ) nin+nout



Loss Function

* Quantifies how good the model is at the intended task

hidden layer ~ output layer

iInput layer

() (5
by
ORONORORG

loss value

C
N
)

®<\©/73
®



Softmax Loss Function

* Generalization of the logistic function to multiple classes

* Assumption: scores are unnormalized log probabilities of the classes

| \

2. normalize to get 1. take the exponential
probabilities of the scores

* Minimize the loss (for a given image i) w.r.t. the correct class k

e Categorical Cross-Entropy loss (also called
Softmax Loss) is a Softmax activation plus
a Cross-Entropy loss

e (Sk(x)

§.<=1 e (S]'(X))

L; = —log




Softmax Loss Function

* Quantifies how good the model is at the intended task

hidden layer ~ output layer

iInput layer
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Softmax Loss Function

* Quantifies how good the model is at the intended task

hidden layer ~ output layer

iInput layer
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loss value L
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Softmax Loss Function

Li = —log(5+5)
unnormalized probabilities
cat 3.2 24.5 0.13 |~ L.i="-log(0.13)
exp normalize =0.89
car 51 —— [164.0 - | 0.87
frog -1.7 0.18 0.00

unnormalized log probabilities probabilities



Gradient Descent

e Finds optimal weights by iteratively tweaking the model parameters
W in order to minimize the cost function L

e |dea:

e Go downhill in the direction of
the steepest slope until you reach
a valley

 Measure the local gradient of the
cost function with regard to the
parameter vector W and go in the
direction of descending gradient
until a minimum is reached




Gradient Descent

e Algorithm:
e |nitialize W with random values (random initialization)
e Gradually improve W by backpropagation to decrease the cost function
e Stop when W converges to a minimum

cost

»

learning
step

W ‘ﬁmr 2
O “‘ " I.rf"
ﬁ;:;a%‘;té:t**:":"”” 158

;:’ﬁﬁ?’
RGN Nl

) *ﬂ eiiii

1 [
'-:=;'i-"’f€5§§{g,§§;:¢f;j

minimum

A 4

random - W
initial value



Gradient Descent

e The loss L is a function of W

N
1
L= NZ Li(f(x, W), y:)

2 backpropagation
 Calculate analytical|gradient vector V,,, L i

e Update W by computing W' =W —n -V, L where n is the learning rate




Gradient Descent

hidden layver 1 hidden layer 2 hidden laver 3

input laver




Backpropagation

* Forward pass — compute the aggregated output of all neurons and the loss

hidden layer ~ output layer

iInput layer

() (5
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loss value L
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Backpropagation

* Backwards pass — update the weights W w.r.t. to the loss

hidden layer ~ output layer

iInput layer

() (5
by
ORONORORG

loss value L

C
N
b

N



Backpropagation

Forward pass

Backward pass

dL dLdz
dx  dzdx
dL
af : dz
dL dLdz
dw  dzdy
dz dz
—=w — =X



Backpropagation

Forward pass

(o)

Z:G(t):1+e‘t

dL dLdz

Backward pass

dL

dt _ dzdt

dz

dt

\

(1—=0o(t)o(t)

dz



Backpropagation
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Learning Rate

* The hyperparameter learning rate n determines how well the algorithm converges

cost 4 cost &
random w random 14
initial value initial value
If the learning rate is too small, then the algorithm If the learning rate is too high, then the algorithm
will take many iterations to converge might overjump the minimum, possibly ending up

even further away from the minimum than before
— algorithm diverges and fails to find a good solution



Learning Rate

e Cost function might have valleys,
ridges, plateaus and other irregular
shapes — makes it difficult to
converge to the minimum

* Challenges:

e Getting stuck in a local minimum,
which is not as good as the global
minimum

e Taking very long to cross a plateau and

unwillingly stopping too early before
the global minimum is reached

cost 4

plateau

local
minimum

global
minimum



Learning Rate

* How to get a good learning rate

low learning rate

high learning rate

good learning rate

Learning rate decay!

Epoch



Optimization Algorithms

* Adapt the learning rate to find the global minimum

e Build up "velocity" to overcome local minima and plateaus

(Stochastic) Gradient Descent

(Stochastic) Gradient Descent
+ Momentum

Vi1 = PVt + Vy, L
Wigq =W —n-Vy, L t
Wig1 =W — 1 vy

p gives "friction" (e.g. 0.9 or 0.99)



Optimization Algorithms

— SGD+Momentum

W= Nesterov

SGD

SGD+Momentum

RMSProp

Adam




Activation Functions

S|gmo|d 1 Leaky RelLU
_ 1 max(0.1z, x)

U(.CU) T 14e—=

tanh Y

tanh(x) q .

RelLU ELU
max(0, x) {w z20

ale® —1) =<0




Convolutional
Neural Networks

Prof. Dr. Martin Kada



ImageNet

I M A G E N E T www.image-net.org

22K categories and 14M images

e Animals « Plants « Structures » Person
« Bird  Tree « Artifact « Scenes
* Fish * Flower * Tools * Indoor
¢ Mammal « Food « Appliances + Geological
* Invertebrate ¢ Materials + Structures Formations

« Sport Activities




ImageNet

The Imag Classiﬁcatin Challenge:

1,000 object classes
1 431 167 |mages

& Giant panda
Drumstick ' Drumstick
Mud turtle |ale®B&8 Mud turtle &
< {4 Russakovsky et al. arXiv, 2014



ImageNet

The Imge ClallcatICallge.

1,000 object classes
1,431,167 images

357 51

2010 2011 2012 2013 2014 2014 2015 Human

. ) Simenyan and
Sanchez and Krizhevsky et al Zeiler and =nena Szegedy et al Heetal

Akt Perronnin : : (GoogleNet (ResNet)

Russakovskyetal g




AlexNet

224

35

27

Pooling

Local Response
Mormalization

128

13 \
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192 192 128 2048 2048
\ 13
3 ".‘: 1000
3|
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Dense Densg
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Pooling
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VGG

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG 16Net)

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
-> 7.3% top 5 error in ILSVRC’ 14

Softmax

3x3 conv, 256
IXD |

FC 1000
FC 4096
FC 4096

AlexNet

| Softmax ] | FC 4096 |
I FC 1000 | | FC 4096 ]
| FC 4096 ] | Pool |
| FC 4096 ] | 3 conv, 512 |
| Pool | | 3conv, 512 |
I 3x3conv.512 | 1 3 conv, 512 |
L _3x3conv. 512 1 | 3 conv, 512 |
I 5x3conv. 512 | 1 Pool 1
| Pool ] | 3 conv, 512 |
1 3x3con ] 1 512 |
1 3x3con ] [ 33conv.512 |
| 3 con ] | _33conv.512 |
| Pool | 1 Pool |
| 3 con | 1 3 cony |
1 3x3con | 1 3 com |
1 Pool | 1 Pool |
L 3x3con 2 | 3 cony |
1 3 con I | 3 conv |
| Pool | 1 Pool |
| 3 con | 1 3 con |
| | | |
| Input | 1 Input |
VGG16 VGG19



GoogleNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!
12X less than AlexNet

- ILSVRC’14 classification winner
(6.7% top 5 error)

Hint: only the convolutional layers and the fully connected layer (at the head of the

EE

Filter
concatenation

Previous Layer

3x3 max
pooling

Inception module

network) that predicts the class scores are counted into the 22 layers



ResNet

[He et al., 2015]

Very deep networks using residual
connections

- 152-layer model for ImageNet

- ILSVRC’15 classification winner
(3.57% top 5 error)

- Swept all classification and
detection competitions in
ILSVRC’15 and COCQO’15!

T relu

F(x) + x

Wrelu

X
Residual block

X
identity




Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wax
1 10 x 3072 119
3072 X 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)



Convolution Layer

32x32x3 image -> preserve spatial structure

5x5x3 filter
32 height 74
I' Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32 width

3 depth



/X7 input (spatially)
assume 3x3 filter

Convolution Layer

7 7 7 7 7

7x7 input with 3 x 3 filter = 5x5 output




Convolution Layer

Filters always extend the full

S depth of the input volume

32x32x3 image /
5x5x3 filter
32 L/
I| Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32




Convolution Layer

__— 32x32x3 image

5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

; wiz+b

~ 1 number:




Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>O ”

convolve (slide) over all

spatial locations
32 28




Convolution

Layer

—

V
——0

32

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

y .

L

28



Activation Maps

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

activation maps

\

28

.

We stack these up to get a “new image” of size 28x28x06!



Convolutional Neural Network

* A Convolutional Neural Network (CNN) is a sequence of Convolutional
Layers, interspersed with activation functions

32

32

CONYV,
RelLU
e.g.6
5x5x3
filters

28

28

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

RelLU

24

CONV,

Softmax

FC 1000

=
FC 4096

FC 4096

E: 0Q

Input

AlexNet



Convolutional Neural Network

Low-level Mid-level High-level Hinearly
—> — —> separable
features features features .
classifier

VGG-16 Conv1_1 VGG-16 Conv3

:
S e s

G-1 Conv5_3



Stride

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>® ”

convolve (slide) over all

spatial locations
32 28




Stride

7 7

7X7 input (spatially)
assume 3x3 filter

applied with stride 1

=> 5x5 output




Stride

7X7 input (spatially)
assume 3x3 filter => 3x3 output!
applied with stride 2



Stride

/X7 input (spatially)
assume 3x3 filter
applied with stride 37

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.



Stride

Output size:
(N - F) / stride + 1

eg.N=7,F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)2+1=3
stride 3=>(7-3)/3+1=2.33:\




Padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)

x7 |
(N -F)/stride + 1 X/ output

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 =>zero pad with 2

F =7 =>zero pad with 3



Examples

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

<

<




Examples

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params  (+1 for bias)
=> 7610 =760



1x1 Convolution

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56



Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

[EE—.

|

> 112
224 downsampling %

224




Single depth slice

Max Pooling

max pool with 2x2 filters

and stride 2

11112 )| 4
5|6 |7 |8
312|110
1123 | 4

>




CNN for Image Classification

RELU RELU

CONV

=
st
L
14
e
=l
LLJ
14

RELU RELU

CONVl

.+MEHﬂﬂﬂ&ﬁLE

CONV

CONV

— RN S WA )

l

CONV

CONV




What’s going on inside ConvNets?

Class Scores:
1000 numbers

% o LR 5 : = i o~ 13 ense ens
A : t 10
% 1 3 192 192
‘ ri ax 128 ax ing ¢ o

o oolin oolin
3 48

Input Image:

3 x 224 x 224

What are the intermediate features looking for?

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks®, NIPS 2012
Figure reproduced with permission.



What’s going on inside ConvNets?

idense
1000

= [ |z
] - 5
3
I'><'I&
k=]
2 | =4
“><F
2 o
4 =
- n' r-| = 5%
—_ e +8
i " *:‘ I g ) B

13
13

e -Flisl] Ll
-1 &1 M- ) ]
1L BN 5P
A=A FF ‘ g Ll
T e
ResNet-18: ResNet-101: DenseNet-121:
64 x3x7Tx7T 64 x3xTx7 64 x3x7TXxT7

AlexNet:
64x3x11x11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, "Densely Connected Convolutional Networks™, CVPR 2017



What’s going on inside ConvNets?

Pick a layer and a channel; e.g. conv5 is
128 x 13 x 13, pick channel 17/128

Run many images through the network,
record values of chosen channel

Visualize image patches that correspond
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copynight Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.



What’s going on inside ConvNets?

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, "Striving for Simplicity. The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.



What to do now?
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What to do now?

Class

Ml No Ground Reference
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What to do now?

e Stanford course CS231n on
“Convolutional Neural Networks for Visual Recognition”

 PDF lecture presentation & YouTube lecture videos
http://cs231n.stanford.edu/

* Deep Learning Book by Goodfellow, Bengio, Courville

OREILLY '4‘,%3’:,%
. . ’ Hands-on 4
* Machine Learning book by Geron | Machine Learing
wi cikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron



http://cs231n.stanford.edu/
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